Delta Robot

www.robotran.be

February 14, 2024

1 Introduction

This exercise consists in simulating the behaviour of a Delta Robot. It aims to introduce, on a simplified model, all the necessary concepts for the modelling, namely:

- Multibody structure with rotation articulations
- Closed-loop kinematics
- Driven joints
- Inverse kinematics
- Inverse dynamics

2 Multibody model

- There are 16 bodies: 3 up legs, 3 middle legs, 3 left down legs, 3 right down legs, 3 platform legs and 1 platform (Fig. 1).
- The bodies are interconnected with each other by different "elementary" joints with 1 degree of freedom (prismatic or rotoid).
- The relative motion of the upLeg1 with respect to the base can take place in rotation about the Y axis $\left(\hat{x}_{y}^{0}\right)$
- Between the upper legs 2 and 3 and the base there is a blocked rotation on the Z axis $\left(\hat{x}_{z}^{0}\right)$
- The relative motion of the middle legs (midLeg) with respect to its respective upLeg can take place in rotation about the Y local axis.
- Every down leg (right and left) has a relative rotational motion with respect to its respective middle leg.
- The relative motion of the platform legs (platLeg) with respect to each left down leg can take place in 3 directions of rotation. To deal with system kinematic loops, Ball cuts (for more information, see RobotranTutorial) will be added between the platform legs and the left down legs.
- The platform of the robot has 3 translational motion coordinates $\left(\hat{x}_{x}^{0}, \hat{x}_{y}^{0}, \hat{x}_{z}^{0}\right)$ with respect to the base and 2 relative rotational motion coordinates ($\mathrm{y} \& \mathrm{z}$) regarding every platform leg.
- The 3 translation motion of the platform are driven (Forced-Driven) and defined by the user.
- The 6 relative rotation motion coordinates of the platform are also blocked (Forced-Driven) to, this way, define its fixed rotation value and to obtain its equivalent joint forces.
- All these bodies are also subject to gravity $\left(9,81 \mathrm{~m} / \mathrm{s}^{2}\right)$.
- The system has 0 degrees of freedom overall:
-23 joints $(+23)$
- 11 driven joints (-11)
- 3 user constraints (-3)
-3 ball cuts, with 3 algebraic constraints every one $(-3 \times 3=-9)$

Figure 1: Multibody model of the Delta Robot

3 Robot trajectory definition

- T1 and T2 translational coordinates driven motion definition (user_DrivenJoints):

$$
\begin{gather*}
q_{1}=a \cdot \sin \left(\omega_{a} \cdot t\right) \tag{1}\\
\dot{q}_{1}=a \cdot \omega_{a} \cdot \cos \left(\omega_{a} \cdot t\right) \tag{2}\\
\ddot{q}_{1}=-a \cdot \omega_{a}^{2} \cdot \sin \left(\omega_{a} \cdot t\right) \tag{3}\\
q_{2}=a \cdot \cos \left(\omega_{a} \cdot t\right) \tag{4}\\
\dot{q}_{2}=-a \cdot \omega_{a} \cdot \sin \left(\omega_{a} \cdot t\right) \tag{5}\\
\ddot{q}_{2}=-a \cdot \omega_{a}^{2} \cdot \cos \left(\omega_{a} \cdot t\right) \tag{6}
\end{gather*}
$$

where:

$$
\begin{aligned}
& \cdot \mathrm{a}=0.1 \mathrm{~m} \\
& \cdot f_{a}=1 \mathrm{~Hz} \\
& \cdot \omega_{a}=2 \pi f_{a}
\end{aligned}
$$

- T3 translational coordinates driven motion definition (user_DrivenJoints):

$$
\begin{gather*}
q_{3}=0.9+b \cdot \sin \left(\omega_{b} \cdot t\right) \tag{7}\\
\dot{q}_{3}=b \cdot \omega_{b} \cdot \cos \left(\omega_{b} \cdot t\right) \tag{8}\\
\dot{q}_{3}=-b \cdot \omega_{b}^{2} \cdot \sin \left(\omega_{b} \cdot t\right) \tag{9}
\end{gather*}
$$

where:

- $\mathrm{b}=0.2 \mathrm{~m}$
- $f_{b}=0.5 \mathrm{~Hz}$
- $\omega_{a}=2 \pi f_{b}$

4 Joints friction

- For every rotational coordinate (user_JointForces): $\mu=10$
- Joint forces: $\dot{Q}_{4-23}=-\mu \cdot \dot{q}_{4-23}$

5 User constraints

- For every middle leg, its joint coordinates between every down leg must be equal:

$$
\begin{aligned}
& \cdot q_{12}=q_{13} \\
& \cdot q_{17}=q_{18} \\
& \cdot q_{22}=q_{23}
\end{aligned}
$$

6 Data

- Base:
- Gravity: $\mathrm{g}=\left[\hat{x}^{0}\right]^{T}\left(\begin{array}{l}0 \\ 0 \\ g\end{array}\right) ; g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- Anchor point 1 position: $d_{b p 1}=\left[\hat{x}^{0}\right]^{T}\left(\begin{array}{c}-0.5 m \\ 0 m \\ 0 m\end{array}\right)$
- Anchor point 2 position: $d_{b p 2}=\left[\hat{x}^{0}\right]^{T}\left(\begin{array}{c}-0.25 \mathrm{~m} \\ 0.433 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- Anchor point 3 position: $d_{b p 3}=\left[\hat{x}^{0}\right]^{T}\left(\begin{array}{c}-0.25 \mathrm{~m} \\ -0.433 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- Joint Base-upper legs:
- Base-upLeg1:
- R2. Angle $=1.0$ rad. Nature: Dependent.
- Base-upLeg2:
- R2. Angle $=1.0 \mathrm{rad}$. Nature: Dependent.
- R3. Angle = 2.0944 rad. Nature: Forced-Driven
- Base-upLeg2:
- R2. Angle $=1.0$ rad. Nature: Dependent.
- R3. Angle $=-2.0944$ rad. Nature: Forced-Driven.
- Carrier body:
- Centre of mass position of each one: $|\operatorname{COM}|_{1,6,11}=\left[\hat{x}^{1,6,11}\right]^{T}\left(\begin{array}{cc}0 & m \\ 0 & m \\ 0 & m\end{array}\right)$
- Anchor point 1 (toDownLeg1): $d_{u L 1}=\left[\hat{x}^{1}\right]^{T}\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0.5 \\ m\end{array}\right)$
- Anchor point 2 (toDownLeg2): $d_{u L 2}=\left[\hat{x}^{6}\right]^{T}\left(\begin{array}{c}0 m \\ 0 m \\ 0.5 m\end{array}\right)$
- Anchor point 3 (toDownLeg3): $d_{u L 3}=\left[\hat{x}^{11}\right]^{T}\left(\begin{array}{c}0 m \\ 0 m \\ 0.5\end{array}\right)$
- Joint Base-upper legs:
- Joint type: R2
- Nature: Dependent
- Middle legs:
- Centre of mass position of each one: $|\mathrm{COM}|_{2,7,12}=\left[\hat{x}^{2,7,12}\right]^{T}\left(\begin{array}{ll}0 & m \\ 0 & m \\ 0 & m\end{array}\right)$
- midLeg1 \rightarrow anchor point to_RightDL1: $d_{m L 1 a}=\left[\hat{x}^{2}\right]^{T}\left(\begin{array}{c}0 m \\ 0.05 m \\ 0 m\end{array}\right)$
$\circ \operatorname{midLeg} 1 \rightarrow$ anchor point to_LeftDL1: $d_{m L 1 b}=\left[\hat{x}^{2}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ -0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- midLeg2 \rightarrow anchor point to_RightDL2: $d_{m L 2 a}=\left[\hat{x}^{7}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ 0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
$\circ \operatorname{midLeg} \boldsymbol{2} \rightarrow$ anchor point to_LeftDL2: $d_{m L 2 b}=\left[\hat{x}^{7}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ -0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- midLeg3 \rightarrow anchor point to_RightDL3: $d_{m L 3 a}=\left[\hat{x}^{12}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ 0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- midLeg $3 \rightarrow$ anchor point to_LeftDL3: $d_{m L 3 b}=\left[\hat{x}^{12}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ -0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- Joint between the middle legs and the down legs:
- Joint type: R1
- Nature: Dependent
- Right down legs:
\circ Centre of mass position of each one: $|\mathrm{COM}|_{3,8,13}=\left[\hat{x}^{3,8,13}\right]^{T}\left(\begin{array}{ll}0 & m \\ 0 & m \\ 0 & m\end{array}\right)$
- Left down legs:
- Centre of mass position of each one: $|\operatorname{COM}|_{4,9,14}=\left[\hat{x}^{4,9,14}\right]^{T}\left(\begin{array}{cc}0 & m \\ 0 & m \\ 0 & m\end{array}\right)$
- leftDownLeg1 \rightarrow anchor point ballLeg1: $d_{l D L 1}=\left[\hat{x}^{4}\right]^{T}\left(\begin{array}{ll}0 & m \\ 0 & m \\ 1 & m\end{array}\right)$
- leftDownLeg2 \rightarrow anchor point ballLeg2: $d_{l D L 2}=\left[\hat{x}^{9}\right]^{T}\left(\begin{array}{ll}0 & m \\ 0 & m \\ 1 & m\end{array}\right)$
- leftDownLeg3 \rightarrow anchor point ballLeg3: $d_{l D L 3}=\left[\hat{x}^{14}\right]^{T}\left(\begin{array}{ll}0 & m \\ 0 & m \\ 1 & m\end{array}\right)$
- Cuts between the leftDownLeg 1-3 and the platLeg 1-3
- Ball cut 1 between the leftDownLeg1 and the platLeg1.
- Ball cut 2 between the leftDownLeg2 and the platLeg2.
- Ball cut 3 between the leftDownLeg3 and the platLeg3.
- Platform legs:
\circ Centre of mass position of each one: $|\mathrm{COM}|_{5,10,15}=\left[\hat{x}^{5,10,15}\right]^{T}\left(\begin{array}{ll}0 & m \\ 0 & m \\ 0 & m\end{array}\right)$
- platLeg $1 \rightarrow$ anchor point to_leftDL1: $d_{p L 1}=\left[\hat{x}^{5}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ -0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- platLeg2 \rightarrow anchor point to_leftDL2: $d_{p L 2}=\left[\hat{x}^{10}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ -0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- platLeg3 \rightarrow anchor point to_leftDL3: $d_{p L 3}=\left[\hat{x}^{15}\right]^{T}\left(\begin{array}{c}0 \mathrm{~m} \\ -0.05 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- Joint between the platform legs and the platform
- Platform - platLeg1:
- R2. Angle $=0$ rad. Nature: Forced-Driven.
- R3. Angle $=0$ rad. Nature: Forced-Driven.
- Platform - platLeg2:
- R2. Angle $=0$ rad. Nature: Forced-Driven.
- R3. Angle $=2.0944$ rad. Nature: Forced-Driven.
- Platform - platLeg3:
- R2. Angle $=0$ rad. Nature: Forced-Driven .
- R3. Angle $=-2.0944$ rad. Nature: Forced-Driven .
- Platform:
- Mass: 1 kg
- Centre of mass position of each one: $|\mathrm{COM}|_{16}=\left[\hat{x}^{16}\right]^{T}\left(\begin{array}{ll}0 & m \\ 0 & m \\ 0 & m\end{array}\right)$
- Inertia: $I_{x x}^{6}=1.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} ; I_{y y}^{6}=1.0 \mathrm{~kg} \cdot \mathrm{~m}^{2} ; I_{z z}^{6}=1.0 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
- Anchor point ballLeg1: $d_{\text {plat } 1}=\left[\hat{x}^{16}\right]^{T}\left(\begin{array}{c}0.05 m \\ 0 m \\ 0 m\end{array}\right)$
- Anchor point ballLeg2: $d_{\text {plat } 2}=\left[\hat{x}^{16}\right]^{T}\left(\begin{array}{c}-0.025 \mathrm{~m} \\ 0.0433 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- Anchor point ballLeg3: $d_{\text {plat } 3}=\left[\hat{x}^{16}\right]^{T}\left(\begin{array}{c}-0.025 \mathrm{~m} \\ -0.0433 \mathrm{~m} \\ 0 \mathrm{~m}\end{array}\right)$
- Anchor point sensor: $d_{\text {sensor }}=\left[\hat{x}^{16}\right]^{T}\left(\begin{array}{c}0 m \\ 0 m \\ 0.1 m\end{array}\right)$

7 Objectives

The expected results are:

- Kinematics: time history of the upper legs positioning (Fig. 2) and the platform trajectory (Fig. 3).

Figure 2: Actuator angles positioning

Figure 3: Platform trajectory

- Dynamics: time history of upper legs joint torques (Fig. 4).

Figure 4: Upper legs-Base joint torques on Z axis

