Robotran C Documentation
mbs_linalg.h
Go to the documentation of this file.
1 
12 #ifndef mbs_lingalg_h
13 #define mbs_lingalg_h
14 /*--------------------*/
15 
16 
29 int mbs_eig_0(double **A, int n, double *eval_a, double *eval_b, double **evec_a, double **evec_b);
30 
46 int mbs_schur_0(double **A, int n, double **T, double **Z, double *WR, double *WI,
47  int reorder);
48 
58 int mbs_rank_0(double** A, int m, int n);
59 
72 int mbs_choldc_0(double **A, int n);
73 
88 int mbs_cholsl_0(double **A, int n, double **B, int nb);
89 
99 int mbs_invLU_0(double **A, double **Am1, int n);
100 
114 int mbs_svdDcmp_0(double **A, int x, int y, double **U, double **S, double **VT);
115 
116 
143 int mbs_over_under_determined(double **A, double *b, int x, int y);
144 
145 #endif
mbs_cholsl_0
int mbs_cholsl_0(double **A, int n, double **B, int nb)
Solves a symmetric positive definite system of linear equations AX=B (B being the right hand side wit...
Definition: cholesky.c:35
mbs_invLU_0
int mbs_invLU_0(double **A, double **Am1, int n)
Inverse the square matrix A using a LU decomposition.
Definition: inverse_lapack.c:15
mbs_svdDcmp_0
int mbs_svdDcmp_0(double **A, int x, int y, double **U, double **S, double **VT)
Realize the singular value decomposition.
Definition: svdcmp_lapack.c:80
mbs_eig_0
int mbs_eig_0(double **A, int n, double *eval_a, double *eval_b, double **evec_a, double **evec_b)
Compute the eigen values and vector of a matrix with index starting a 0.
Definition: eig_lapack.c:22
mbs_choldc_0
int mbs_choldc_0(double **A, int n)
Compute the Cholesky decomposition of A, i.e.
Definition: cholesky.c:18
mbs_over_under_determined
int mbs_over_under_determined(double **A, double *b, int x, int y)
Solve a linear system of equations, A*x=b, using dgelss lapack function.
Definition: svdcmp_lapack.c:14
mbs_schur_0
int mbs_schur_0(double **A, int n, double **T, double **Z, double *WR, double *WI, int reorder)
Compute the Schur decomposition.
Definition: schur_lapack.c:34
mbs_rank_0
int mbs_rank_0(double **A, int m, int n)
Compute the rank of a matrix.
Definition: rank_lapack.c:21